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AUCTIONS FOR OIL AND GAS LEASES WITH AN INFORMED 
BIDDER AND A RANDOM RESERVATION PRICE 

We analyze a first-price, sealed bid auction with a random reservation price to study 
the federal sales of offshore oil and gas leases on drainage tracts. Our model assumes the 
object to be sold has an unknown common value, but one buyer has better information 
than the others. We permit the reservation price to be correlated with the information of 
the informed buyer, which reflects both his assessment of the value of the object and the 
probability of rejection at any bid. Assuming all random variables are affiliated, we 
establish the following results. (i) The percentage rate of increase in the distribution of 
the uninformed bid is never greater than the percentage rate of increase of the distribu- 
tion of the informed bid. (ii) The distributions are identical at bids above the support of 
the reservation price. (iii) The informed buyer is more likely to submit low bids. We 
demonstrate that bid data from the federal sales of offshore drainage leases satisfy these 
restrictions. 

KEYWORDS:Affiliation, auctions, bidding, oil. 

1. INTRODUCTION 

IN THIS PAPER WE ANALYZE a model of a first-price, sealed bid auction to study 
the federal sales of offshore oil and gas leases on drainage tracts. These tracts 
are adjacent to tracts on which deposits have already been discovered. 
Hendricks and Porter (1988) (HP henceforth) provide evidence that the value of 
these leases, while uncertain at the time of the sale, is approximately the same 
for all participants, but that the owner of an adjacent tract has superior 
information. Furthermore, Hendricks, Porter, and Spady (1989) (HPS hence- 
forth) argue that, from the point of view of buyers, the reservation price of the 
seller is effectively a random variable, correlated with the bid of the informed 
bidder. We extend a model of Engelbrecht-Wiggans, Milgrom, and Weber 
(1983) (EMW henceforth) to incorporate these features and establish some 
restrictions on the equilibrium distributions of bids. We then test these implica- 
tions with bid data for 295 drainage tracts off the coasts of Louisiana and Texas 
that were sold between 1959 and 1980. 

Previous studies of auctions with asymmetric information by Wilson (1967), 
Weverbergh (1979), and EMW were also motivated by the drainage auctions. 
The basic model is a sealed bid, first-price auction with a single informed buyer 
and one or more uninformed buyers bidding for an object of unknown but 
common value with a fixed reservation price. Under these assumptions, EMW 
demonstrate that the distributions of the high uninformed bid and the informed 
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bid are identical above the reservation price, with some informed bids possibly 
concentrated at the reservation price. 

We extend the basic model to allow for an exogenous random reservation 
price that may be correlated with the value of the object and/or the informa- 
tion of the informed buyer. Consequently, to incorporate his estimate of the 
joint distribution of the value of the object, V, and the reservation price, R, 
conditional on his information, the signal of the informed buyer, X ,  must 
generally be multidimensional. This extension considerably complicates the 
analysis. To guarantee sufficient regularity conditions on the joint distribution of 
(V, R,  X), we require these random variables to be affiliated, a concept first 
introduced in the bidding literature by Milgrom and Weber (1982). This as- 
sumption implies that the conditional expected value of V is nondecreasing in 
the realizations of both R and X. It also implies that the distribution of R,  
conditional on X ,  satisfies the monotone likelihood ratio property with respect 
to the realizations of X. 

With these restrictions, we establish that the equilibrium informed bid is a 
nondecreasing function of the signal X and, consequently, also affiliated with V 
and R. This relation in turn allows us to establish the following restrictions on 
the distribution functions of bids. First, the percentage rate of increase in the 
distribution function of the high uninformed bid is never greater than the 
percentage rate of increase in the distribution function of the informed bid. 
Second, above the support of R,  the two distributions are identical. Third, near 
the lower bound of the support of R,  only the informed buyer bids with positive 
probability. The high rejection rate for low bids forces the informed buyer to bid 
close to his valuation when it is low, which makes low bids by uninformed 
buyers unprofitable. Roughly speaking, these restrictions imply that uninformed 
buyers are less likely to participate than the informed buyer, but if they 
participate, they bid high rather than low. 

Working with data on tracts sold before 1970, HP establish that neighbor 
firms, those that previously purchased leases on adjacent tracts, possessed 
considerable inside information about the value of the drainage tracts offered 
for sale. The average return to neighbor firms submitting a winning bid was 
roughly 180% of their bid, while the average return of nonneighbor firms was 
approximately equal to their bid. Also, after conditioning over relevant variables 
that were public information, the ex post discounted returns on drainage tracts 
sold before 1970 were highly correlated with the highest neighbor bid and 
essentially uncorrelated with the high nonneighbor bid. They also provide 
evidence of collusion among the neighbor firms, so that there was effectively 
only one informed bid. For example, the average high neighbor bid did not 
increase with the number of neighbor firms, nor was there a significant effect on 
nonneighbor bidding. 

HPS analyze a superset of the HP data set that includes tracts sold between 
1959 and 1979. On the basis of their analysis, they argue that the reservation 
price of the government had a significant exogenous random component. The 
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official minimum price was typically $25 per acre. Nevertheless, the government 
rejected a higher bid on 58 of the 295 drainage tracts. Moreover, the rejection 
decision appears to be nonstrategic. Only about a third of the tracts in which 
the high bid was rejected were offered again at a later date, generally with a lag 
of 12 to 18 months. Also, the rejection option was rarely used in those instances 
when the government had the most to gain. Bids over five million dollars on 
drainage tracts were almost always accepted. HPS conclude that "the purpose 
of the government's rejection policy was to reduce the incentive that firms might 
have had to bid the preannounced minimum price on tracts that, on the basis of 
public information, were regarded as low value tracts." 

Our working hypotheses in this paper are based on the conclusions drawn by 
HP  and HPS from their analyses. We suppose that all neighbor firms collude as 
a single bidder and treat the highest neighbor bid as the informed bid. The 
nonneighbor firms are assumed to be uninformed bidders. Figure 1 illustrates 
the empirical distribution functions of the (logarithm of the) highest neighbor 
and nonneighbor bid on each tract in our sample. These distributions differ 
from the marginal distributions since our data include only those tracts on 
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which at least one firm submitted a bid. For instance, the height of a neighbor 
distribution at 0 represents the proportion of tracts on which the neighbor firms 
submitted no bid among tracts which received at least one bid. 

Notice that the three restrictions mentioned above appear to be satisfied. The 
percentage rate of increase in the distribution function of the high neighbor bid 
appears to be everywhere at least as great as the percentage rate of increase in 
the distribution function of the high nonneighbor bid. The distributions are 
roughly equal above 4 million dollars, where the high bid was rejected on only 6 
of 122 tracts (as opposed to 58 rejections on the full sample of 295 tracts). 
Finally, neighbor firms were much more likely to submit relatively low bids than 
were nonneighbor firms. For example, more than 15% of the high neighbor bids 
lie between 0 and .25 million dollars, whereas less than 5% of the high 
nonneighbor bids lie in this range. We provide informal tests of these restric- 
tions in Section 6. 

The paper is organized as follows. In Section 2 we present the basic model 
and describe the auction. Section 3 contains an analysis of two examples to 
illustrate the main results of the paper. In Section 4, we consider the general 
model, and use the affiliation restriction to establish that the bid function of the 
informed buyer is monotonic in the signal X. Section 5 contains the main 
theoretical results of the paper described above. In Section 6, we investigate the 
extent to which the empirical distributions of high neighbor and high nonneigh- 
bor bids in the HPS data set satisfy our theoretical restrictions. Our conclusions 
are summarized in Section 7. 

The proof that the bid function is monotonic in the information signal may be 
of some independent interest. It is apparently the first such result that allows for 
a multidimensional signal that may be correlated with both the value of the 
object and the seller's reservation price. However, as it stands, our argument 
does not extend to the case where there are two or more informed bidders. 
Since the reservation price is exogenous, its distribution does not satisfy various 
regularity conditions implied by profit maximization, nor does it vary with the 
bidding strategies of the buyers. 

2. THE UNDERLYING ENVIRONMENT AND THE AUCTION RULES 

An indivisible object with unknown value V is to be sold in a sealed bid, 
first-price auction. The participants consist of an informed seller, who observes 
a private signal and sets a reservation price R determined before the bids are 
revealed, an informed buyer, who observes a private signal X, and an unin- 
formed buyer who observes only a public signal which we hold constant 
throughout. We restrict attention to a single uninformed buyer only to simplify 
notation. As we argue below, the equilibrium restrictions on the informed 
bidding strategy and the distribution of the highest uninformed bid are indepen- 
dent of the number of uninformed buyers. The buyers submit sealed bids 
without knowing the reservation price. A buyer wins the object with certainty if 
his bid is strictly greater than any other bid and not less than the reservation 
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price. If both buyers make the same bid and it is not less than the reservation 
price, the object is allocated according to some rationing rule that is indepen- 
dent of the reservation price. The winner of the object receives the object in 
exchange for his bid. 

We suppose that V is a real valued random variable and R is a positive 
random variable, both with finite expectation. The realization of X lies in an 
n-dimensional Euclidian space. The joint distribution of ( V ,R ,  X )  is common 
knowledge. Throughout the paper, random variables and their associated proba- 
bility distributions are denoted by upper case letters, real numbers by lower case 
letters, and functions by lower case Greek letters. 

In equilibrium, the uninformed buyer must generally randomize his bid. 
Therefore, we suppose that he observes the realization of a random variable U 
which is uniformly distributed on [O, 11 and independent of ( V ,R, X ) .  A strategy 
for the uninformed buyer is a real valued function a of the realizations of U 
which, without loss of generality, we restrict to be nondecreasing. The probabil- 
ity induced by a ( U )is denoted by P, and the associated distribution function by 
G,. Similarly, a strategy for the informed buyer is a real valued function p of 
the realizations of x.*The probability induced by P ( X ) is denoted by Pp and 
the associated distribution function by Gp. 

3. EQUILIBRIUM WITH AN INDEPENDENT RESERVATION PRICE: 
TWO EXAMPLES 

We begin with an informal discussion of the game when the reservation price 
is independent of both the true value and the signal of the informed buyer. We 
then analyze two simple examples to illustrate most of the properties of the 
equilibrium to be derived in a more general context in Section 5. 

When R is independent of V and X ,  and assuming G, is continuous, the 
expected payoff to the informed buyer with signal x who bids b may be written 
as E [ V -  blX=x]K(b)G,(b),  where K(b)  denotes the probability that the 
reservation price is not greater than b. In this case, the optimal bid of an 
informed buyer with signal x depends only on the value of H ( X )=E[VIX].  
The strategy of the informed buyer, p ,  is then simply a function of the 
realizations of H. This in turn simplifies the definition of payoffs for the 
uninformed buyer. With this simplification, the expected payoff to the unin- 
formed buyer from bidding b may be expressed as E [ V -  blp G b]K(b)Gp(b).  
An equilibrium is then a function p and a distribution function G, which are 
mutual best responses. In particular, the support of G, must be contained in 
the set of bids which maximize E[V-b Ip G b]K(b)Gp(b).  

In what follows, p denotes the equilibrium bid function of the informed 
buyer. To determine p, it will be convenient to first solve for the optimal bid 
function for the informed buyer in the absence of an uninformed buyer. Let p0 
denote this function. 

If X contains mass points, it may also be necessary for the informed bidder to randomize his 
bid. In this case, we may add a continuously distributed independent component to his signal. To 
simplify the notation, we avoid this complication. See Milgrom and Weber (1985) for further detail. 
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3.1. Example 1:R is a Uniformly Distributed Random Variable 

Suppose R is distributed uniformly on [I, 31 and H is exponentially dis- 
tributed with mean 6. (Note that, given the definition of H, the expected value 
of H is also the (unconditional) expected value of the lease.) In the absence of 
an uninformed buyer, the problem of the informed buyer with valuation h is to 
choose b to maximize (h - b)K(b). Solving for b then yields the bidding 
strategy 

This bid function is illustrated in Figure 2a, with the value of h represented 
on the vertical axis and the bid on the horizontal axis. If the conditional 
expected value of the object is less than 1,the buyer does not bid. For values of 
h between 1 and 5, the bid function is increasing with slope 1/2 and range [I, 31. 
For values of h which exceed 5, the buyer bids 3, which is just sufficient to win 
the object with certainty. 

Now consider the effect on the bid of an informed buyer of competition from 
an uninformed buyer. There are basically two steps to the analysis. The first 
step consists of showing that 6 is nondecreasing which we demonstrate in 
Lemma 3 below. For the special case being analyzed here, a simple self- 
selection argument suffices (see EMW). 

Bid 
FIGURE functions for Example 1.2a.-Bid 

3Setting pO(h)=0 for h < 1 is just a convention. Any bid less than 1 will have the same 
effect-the buyer will never win the object. 
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The second step is to show that the uninformed buyer cannot earn positive 
profits. This result is also standard although a careful argument is a bit tedious. 
The basic argument runs as follows. Let b, be the lower bound of the support 
of G, and suppose that G,(b,) = 0. If the expected profit of the uninformed 
buyer is positive, then there must be a nondegenerate set of realizations of H 
such that h > b, and p(h) G b,. That is, for the uninformed buyer who bids 
slightly above b,, there must be some chance of winning when the expected 
value of the object exceeds b,. But, in that case, the informed buyer is not 
behaving optimally. Since he never wins the object with a bid of b, or less, his 
optimal bid at realizations of H larger than b, must exceed b,. This contradic- 
tion establishes the result. A slight modification of the argument also can be 
applied in the case where G,(b,) > 0. 

The monotonicity of p and the zero expected profit condition imply that, for 
P(h)> 0, 

Since the uninformed buyer can always earn zero by not bidding, he never bids 
in the range where p(h) exceeds E[VIH G h] .  Consequently, G,(p(h))= 

G,(E[VIH ,< h]) . The definition of as a best response implies that ( h  -
p(h))K(p(h))G,(p(h))2 ( h  - b)K(b)G,(b) for all b. Since G,(b) is nonde- 
creasing, it follows that p(h) must also satisfy, for all b 2 E[VIH G h] ,  

We conclude from relations (1)and (2)that @(h)is the maximizer of ( h  - b)K(b)  
subject to b > E[VIH G h] .  

This characterization of p reveals that the role of the uninformed buyer is 
essentially to impose a constraint on the bid function of the informed buyer. 
Conditional on realizations of the informed bid that are no greater than b,  the 
conditional expected value of the object cannot exceed b. A single uninformed 
buyer is sufficient to impose this constraint, so there is no loss of generality in 
restricting attention to this case. Also, notice that, since pO(h)is the maximizer 
of ( h  - b)K(b) ,it follows immediately that p(h) 2 pO(h).Both of these results 
do not depend upon the independence of R and, in the Appendix, we show that 
they hold for any distribution of ( V ,X, R).  

Return now to Figure 2a. Here pO(h)exceeds E[VIH G h ]  for values of h 
between 1 and h ,  where h is the unique solution to E[VIH G h ]= 3. Therefore, 
over this interval, pO(h)also satisfies the conditions for p(h). For larger values 
of h ,  pO(h)  is equal to 3, which is less than E[VIH ,< h].The uninformed buyer 
could then earn positive profit by submitting a bid between 3 and 6, where the 
expected return is 6 -b. (A bid above 3 wins the object for sure against pO,and 
6 is the expected value of the lease.) Consequently, for valuations larger than h ,  
the constraint, b 2 E[VIH G h] ,is binding and the informed buyer must increase 
his bid to E[VIH G h].Faced with this revised strategy, the uninformed buyer is 
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FIGURE2b.-Distribution functions for Example 1. 

now indifferent between submitting a bid between 3 and 6 and staying out. 
Consequently, his strategy can be adjusted so that the informed buyer has no 
incentive to deviate from p .  

This example, although quite reasonable, is particularly well behaved. The 
support of the strategies of both buyers is a connected interval and p(h) is equal 
to E [ V J HG h] at values of h where the constraint, b E [ V J HG h], is binding. 
The next example illustrates a case where neither of these conditions is 
satisfied. 

3.2. Example 2: R is a Bernoulli Random Variable 

Suppose that R has a Bernoulli distribution with equal mass concentrated at 
1 and 3, and again assume that H is exponentially distributed with mean 6. In 
the absence of an uninformed buyer, the optimal bid function for the informed 
buyer is 

This bid function is illustrated in Figure 3a. If the expected value of the 
object is less than 1, the buyer does not bid. For values of h between 1 and 5, 
expected profit is maximized by a bid of 1which wins the object with probability 
1/2. For values of h greater than 5, the buyer bids 3 to win the object with 
certainty. 

Now suppose an uninformed buyer enters the auction. Let h be the unique 
solution to ECVIH G hl  = 1. For values of h between h and 5, pO(h) is less than 
E[VIH G h]. Therefore, by bidding slightly above 1, an uninformed buyer earns 
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Bid 
FIGURE3a.-Bid functions for Example 2. 

positive expected profits. Also, as in Example 1, a bid slightly above 3 yields 
positive profits as well. In this case, therefore, the constraint, b >E[VIH G h],is 
binding on two intervals, [h, 51 and [A, m). However, the necessary adjustment in 
the strategy of the uninformed buyer is not as straightforward as in Example 1. 
Relations (1) and (2) imply that when the realization of h of H lies between h 
and 5, the informed buyer must choose between a bid of E[VIH G h] and a bid 
of 3. This choice arises because the informed buyer's profit function is discontin- 
uous at a bid of 3, where the probability of beating the reservation price jumps 
from 1/2 to 1.Let h* denote the unique value of h at which the informed buyer 
is indifferent between a bid of E [ V J HG h] and 3. It is easy to show that h* lies 
between h and 5.The equilibrium bid strategy is then defined as follows: 

( E [ V I HG h], h >A,  

3.3. TheBid Distributions 

The distributions of the informed and uninformed bids for our two examples 
are illustrated in Figures 2b and 3b. Although there is no closed form solution 
for the bid distributions, we may still establish a close relationship between the 
two distribution^.^ 

4 ~ tpoints where p is invertible, G p ( b )= 1- e-6p-'(b'. However, at points of increase in P ,  
P ( h ) = 6 - h / [ e h / 6- 11, which does not yield a closed form inverse. Figures 2 and 3 were generated 
by using numerical approximations of P- ' (b) .  
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Let g, and g,, denote the respective densities of G, and G,, and consider any 
bid b in the interior of the support of both G, and G,,. We note first that, in 
both examples, any such b lies outside the support of K. Therefore, if the 
informed buyer raises his bid by one unit, his expected cost increases by KG,, 
the probability that he wins the object. Since K is constant in some neighbor- 
hood of b, his only expected gain is from the additional chance of winning the 
object when the uninformed buyer bids just above b, ( h- b)Kg,. Consequently, 
the first order condition for informed profit maximization is ( h- b)&, =KG,. 
Similarly, if the uninformed buyer increases his bid by one unit, his expected 
cost increases by KG,, and his only gain is from winning the object when the 
informed buyer bids just above b, ( h- b)Kgp. Therefore, the first order condi- 
tion for uninformed profit maximization is ( h- b)&,, =KG,,. 

Comparison of the two first order conditions then yields g,/G, =gp/Gp. 
Above the support of R, both distributions must have the same points of 
increase (otherwise, some buyer could lower his bid without loss). It follows 
immediately, therefore, that in both examples the distributions are identical for 
bids above 3. Furthermore, in Example 2, the rates of increase in the logs of the 
distribution functions are also equal on the interval [I,b*]. 

In general, the presence of a random reservation price may result in an 
irregular distribution of bids. For instance, in Example 2, the supports of the 
distribution function of both buyers are not connected. Also, in both examples, 
there is at least one mass point at a positive bid in the distribution function of 
the informed bid. Notice, however, that in both cases the support of the 
informed bid contains the support of the uninformed bid. This property follows 
from the observation that the expected value of the object to a winning 
uninformed bid is the same at any price in an interval (b', b) in which the 
informed buyer never bids. Therefore, if the expected profit to the uninformed 
buyer is zero at b', it must be negative at any higher bid in (b', b). 
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Also note that in both cases there is a bid b such that GJb) = GJO) and 
Gp(b) > Gp(0). In Example 1, Gp is strictly increasing over [I, 31, but G,(3) = 

G,(O). In Example 2, G, is strictly increasing over [I, b*], but Gp has positive 
mass at 1. This property is a consequence of the fact that at any positive bid 
submitted by the uninformed buyer, there must be some informed types that bid 
less, but whose valuations exceed the bid of the uninformed buyer. Otherwise, 
the uninformed buyer would earn negative profits, since he would win only 
when the value of the object is less than his bid. 

In summary, in both examples the distribution of the uninformed bid stochas- 
tically dominates the distribution of the informed bid, and the distributions are 
equal above the support of the reservation price. In Example 1, there is a range 
of low bids in which only the informed buyer bids. In Example 2, the informed 
buyer bids the minimum reservation price with positive probability whereas the 
uninformed buyer always bids more than this price if it bids. In both examples, 
the uninformed buyer is more likely to bid high, given that it bids, than the 
informed buyer. The next two sections extend these results to the more general 
case where (V, R, X )  is affiliated. 

4. THE GENERAL MODEL 

As noted in the introduction, the evidence from the auctions of offshore oil 
and gas leases strongly suggests that R and V are positively correlated. This 
introduces two kinds of complications. First, it means that the informed buyer 
should condition his valuation of the object on the event of acceptance, since 
this is informative of V. The realization of X also affects the informed buyer's 
estimate of the probability of acceptance. Hence, it is no longer possible to 
index the informed buyer types by their conditional expectation of the value of 
the object. The dimension of X matters. As a result, we need to reformulate the 
maximization problems of the informed and uninformed buyers, and establish 
an analogue of the zero expected profit constraint. This we do in Lemma 1. 

The second difficulty is also related to the dimensionality of X. The equilib- 
rium analysis depends critically upon the monotonicity of the bid function. This 
is easily established when the information in the signal can be summarized by 
the conditional expected value of the object. In the general correlated case, 
however, it is necessary to show that p is monotone in X, which is multidimen- 
sional. To ensure this result, we exploit the concept of affiliated random 
variables, first introduced in the bidding literature by Milgrom and Weber 
(19821, to impose the necessary relations between (V, R, XI. The relevant 
implications of affiliation are summarized in Lemma 2. Lemma 3 establishes the 
monotonicity property of P .  We include its proof in the text since it is 
apparently the first such result that allows for a multidimensional signal. 

Readers who are not interested in the technical details of the arguments 
underlying these results can skip to the next section, where we present the main 
theorems. 
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4.1. Payoffs and Equilibrium 

Let J ( .  1x1 denote the distribution function of R conditional on a realization 
x of X. Then, in the absence of an uninformed buyer, E[V - b lR <b, X = 

x]J(bJx) is the expected profit to an informed buyer with information x from 
bidding b. If the distribution function of the uninformed bid, G,, is continuous, 
then E[V - b lR < b, X =xlJ(b lx)G,(b) is the expected payoff to the informed 
buyer with information x from bidding b when facing the strategy a. 

Let K(.  Ib) denote the distribution function of R conditional on an informed 
bid of b, induced by J and P. That is, K(bllb) is the probability that the 
reservation price is not greater than b', given that the informed bid is b. If the 
uninformed buyer wins the object with a bid of b, then he knows that b is not 
less than the reservation price and that the informed bid is no greater than b. 
Both events are informative in assessing the value of the object. If Gp is 
continuous at b, then J(-,,,lEIV - bJRG b, P = t]K(bJt)Pp(dt) is the expected 
payoff to an uninformed buyer who bids b when facing the strategy P.  

An equilibrium is a pair (a ,  p )  that maximizes the expected payoff to each 
buyer given the strategy employed by the other buyer. Since we have defined R 
to be positive, it follows that J(0Jx) = 0 as.-Px so that a bid of 0 guarantees a 
buyer zero profit^.^ Standard arguments then establish the following properties 
of an equilibrium. 

LEMMA1: Suppose ( a ,  P )  is an equilibrium. Then, for any bid b: 

(a)  E[V-P(x)JR < P ( x ) ,  X = X ]  J(P(x)lx)G,(P(x))  

>E[V- bJRG b, X=x]J (bJx )G , (b )  as.-Px. 

Condition (c) implies that the rationing rule in the event of ties is irrelevant. 
The informed buyer never makes a bid which earns positive profits and has a 
positive probability of being matched by the uninformed buyer. By increasing 
his bid slightly, one of the buyers could obtain a positive gain at essentially zero 
cost. The inequalities in conditions (a) and (b) are then just the statement that 
each buyer chooses a best response given his information. Condition (b) also 
implies that the uninformed buyer earns zero expected profits. The argument is 
identical to the one we presented in the last section. 

For any random vector Z, let Pz denote the probability induced on R P .Then, for a :  R P+R, 
a (z )  = 0 as.-PZ if jla(z)lPz(dz) = 0. In general, a restriction on Z is satisfied as.-Pz if it is 
satisfied with probability 1 with respect to PZ. 
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Notice that the constraint on the bid function of the informed buyer when R 
is correlated with (X,  V) is that, conditional on realizations of R and the bid by 
the informed buyer that are no greater than b, the expected value of the object 
cannot exceed b. The restrictions of Lemma 1 remain essentially unchanged if 
there is more than one uninformed buyer and G, represents the distribution of 
the maximum uninformed bid. Consequently, there is no loss of generality in 
restricting attention to the case of a single uninformed buyer. 

4.2. Afiliation and the Monotonicity of the Informed Bid Function 

A random vector Z is afiliated if any two nondecreasing functions of Z are 
nonnegatively correlated. The precise definition and some general properties 
are provided in the Appendix (see also Milgrom and Weber (1982)). 

ASSUMPTION1: (V, R, X )  is afiliated. 

Assumption 1guarantees that the realizations of the signal can be ordered so 
that higher values of X imply (on average) higher values of both V and R, or at 
least average values which are no lower. We allow R to be correlated with V 
and, in addition, allow it to contain information about V not contained in X. 
However, unless R is independent of (V, X )  as in Section 3, risk neutrality does 
not imply that we can reduce X to a one-dimensional signal. 

Lemma 2 summarizes the critical implications of Assumption 1. The proof is 
presented in the Appendix. 

LEMMA2: (a) E[VIR = r', X = x t ]  ,< E[VIR = r ,  X = x ]  for (r', x') < (r ,  x )  
a.s.-PRxxX PRxx.(b) J(rflx')J(rlx) J(rrIx)J(rlx') for r '  < r,  x '  < x  a.s.-P,x 

px. 

Part (a) states that the conditional expected value of the object is nondecreas- 
ing both in the reservation price and in the information of the informed buyer. 
If J ( .  1x1 is differentiable with density j ( .  lx), part (b) is equivalent to the 
statement that the survival rate j ( .  Ix)/J(. Ix) is nondecreasing in x. Note that, 
by setting r = co, part (b) also implies that J(r1Ix) < J(rrlx') for x' ,<x. 

To establish that the informed bid function is monotonic, we require a slight 
strengthening of Lemma 2(a). 

ASSUMPTION2: E[VIR = r', X =XI] < E[VIR = r,  X = x] for ( r ,  x )  2 (r', x'), 
x # x', a.s.-PRxx x PRxx. 

Assumption 2 is always satisfied for some nearby environment (I/',R, XI. For 
instance, if V=  I/'+ F C ~ = ~ X ~ ,  E > 0then Assumption 2 is satisfied for any 
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whenever (V',R, X )  satisfies Assumption If the reservation price is not 
stochastic, then, using standard arguments, Assumption 1 implies that expected 
profit must be nondecreasing in x. However, if the distribution of the reserva- 
tion value shifts too much with an increase in x, expected profit may decline, 
possibly to zero. To avoid this complication and other technical points, we 
impose the following assumption. 

ASSUMPTION 	 X P,.3: J ( r  Ix) > 0 implies J ( r  lx') > 0 a.s.-P, 

Assumption 3 implies that the lower bound of the support of R is nonnega- 
tive and independent of X. Our analysis requires no additional regularity 
conditions. Using Assumptions 1to 3, we may establish that the equilibrium bid 
of the informed buyer is a nondecreasing function of the realization of X. The 
proof extends the standard self-selection argument used by EMW for the case 
where R is constant. 

LEMMA3: Suppose ( a ,P) is an equilibrium. Then, E[V -P(x)lR <P(x), X = 

x]J(P(x)lx)G,(P(x)) > 0 implies P(x') >P(x) for x'  a x ,  a.s.-P, X P,. 

PROOF: For any pair (x,,  x2), let bi =@(xi), Gi = G,(bi), J,, =J(bilxj), u,, = 

E[VIR G bi, X =x,], and uA, =EIVlbl <R G b,, X=xj ] ,  i, j = 1,2. Suppose the 
lemma is false. Then there is a subset L cRn X Rn, P, x P,(L) > 0, such that 
for (xl ,  x2)  E L ,  x1 a x 2 ,  x1 +x2 ,  bl <b2, and 

(3) 	 ( u22 - b2) J22G2 > 0. 
For (x,, x2)  E L ,  the best response property for P (Lemma l(a)) implies 

(4) (u l l  - b,) JllGl ( LI,, - b2) J2,G2 as.-P, x P, 
and 

( 5 )  ( ~ 1 ~ ~bl)J12G1< ( ~ 1 ~ ~b2)J22G2 as.-P,x P,. 
Multiplying equation (4) by J12, equation (5) by J l l ,  and subtracting implies that 
the following relation holds as.-P, x P,: 

(6) b21J2lG2 - ~11JllGlIJ12 

G b22J22G2 - ~12J12GlIJ11 +b2GZ(J12J21 -J11J22). 
By definition, u2,J2, = ul,Jl, + u,,(J2, - .Ilj). Therefore, (6) may be written as 

(7) (u12-u11)J12Jll(G2- G1) + ('A2 -b2)(JllJ22 -J12J21)G2 

+(uAz-~Al)(J21 -J11)J12G2>0. 

Inspection of the proof of Lemma 3 below reveals that Assumption 1 is sufficient to guarantee 
that a monotonic p may be selected as a best response to a.However, without Assumption 2, there 
may be another best response with a different distribution of bids in which P is not monotonic. We 
have not investigated the conditions under which a continuity argument, combined with Lemma 3 
below, could be used to establish the existence of an equilibrium with p monotonic in the absence 
of Assumption 2. 
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Lemma 2 and Assumptions 2 and 3 imply that all three terms in equation (7) 
are nonpositive. (Note that u,, > u,, by Lemma 2(a), and L),, > b2 from equa- 
tion (3).) All that remains to be shown is that at least one term is strictly 
negative. Since relation (3) implies that J,, > 0, it follows from Assumption 3 
that J,, 2 J,, > 0. Lemma 2(a), which implies that u,, 2 v,,, and equation (3), 
which implies G, > 0, together with relation (4) then imply that J,, > 0. Also, by 
definition, J,, = J,, implies u,, = u,,. Therefore, relations (3) and ( 5 )  imply that 
either G, > G ,  or J,, > J,,. 

Suppose first that G, > G,. Since J,, > 0 and J,, > 0, and because Assump- 
tion 2 implies that L),, > ull, the first term in equation (7) is then negative. 
Alternatively, suppose that J,, > J,,. Manipulation of Lemma 2(b) then implies 
that J,, > J,,, which, combined with Assumption 2, implies that the third term is 
negative. Q.E.D. 

To understand the role that Lemma 2 plays in the proof of Lemma 3, notice 
that Lemma 2(a) ensures that the first and the third terms in equation (7) are 
nonpositive. If R is independent of (V, XI, then the second term of equation (7) 
is zero, since the distribution of R does not depend upon X. The contradiction 
then follows immediately from the fact that the change in the probability of 
winning can be positive only if b, is smaller than b,. When (V, R, X )  is 
affiliated, Lemma 2(b) ensures that the second term in equation (7) is nonposi- 
tive. 

To facilitate the statement of our results, which follow in the next section, we 
adopt the following convention for zero profit bids. 

ASSUMPTION4: Suppose ( a ,  P )  forms an equilibrium. Then: 
(a) /(-,,,lK(b lt)Pp(dt) = 0 implies G,(b) = G,(O), and 
(b) E[V- blR d b, p = blK(bIb)G,(b) = 0 implies b = 0, a.s.-Pp. 

Assumption 4 requires the uninformed bidder to submit a positive bid only if 
he expects to win the object with positive probability. Similarly, whenever the 
informed buyer cannot earn positive profit, he submits a bid of zero. Given 
Assumption 2 and Lemma 3, this convention guarantees that P is nondecreasing 
as.-Pp, but does not restrict the equilibrium bid distributions above the lower 
bound of R. 

Given that the informed bid is nondecreasing in X, it follows from Assump- 
tion 1 that (V, R, p )  is also affiliated. For the remainder of the analysis, we 
assume that (a ,  p )  forms an equilibrium. Lemma 3 and Assumption 4 then yield 
the following restatement of Lemma 2 and Assumption 2 in terms of the bid of 
the informed buyer rather than his information signal. 

LEMMA4: (a) E[VIR = r', P = b'] ,< E[VIR = r, P = bl, (r', b') d (r,  b) (with 
strict inequality if b > b') a.s.-PR xp  X PRx p  

(b) K(rtlb')K(rlb)2 K(r'lb)K(rlbr), r '  < r, b' < b as.-Pp X Pp. 
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Our results also require that the informed buyer sometimes earn strictly 
positive profits whenever the uninformed buyer can earn zero profits with a bid 
above the minimum reservation value. To ensure this property, we assume that 
the informed buyer sometimes bids 0. 

ASSUMPTION - x]  < 0)) >5: PX({xERn: J(bIx) > 0 implies E[V blR <b, X = 

0. 

Assumption 5 states that, with positive probability, the informed buyer 
sometimes receives a signal for which his expected profit is negative at any bid 
which exceeds the reservation price. 

LEMMA 5: (a) Pp({O}) > 0, and (b) K(b 10) > 0 implies /EL V -b lR <b, P = 

OlK(b 10) < 0. 

PROOF: The result follows from Assumption 5 and Lemmata 3 and 4. Q.E.D. 

The informed buyer sometimes does not bid. In those cases, his expected 
profit at any bid above the lowest possible reservation price is strictly negative. 

5. THE BID DISTRIBUTIONS 

In this section, we exploit the affiliation of (V, R, P)  to establish the main 
theoretical results of the paper. Theorem 1 establishes two results. First, the 
rate of increase in log Gp is never less than the rate of increase in log G,. From 
this property it follows immediately that (i) the support of P contains the 
support of a, and (ii) P stochastically dominates a. Second, when R is 
independent of (V, X), the rate of increase in log Gp equals the rate of increase 
in log KG,. It follows immediately from this property that G, and Gp are 
identical above the support of R. Theorem 2 establishes that the informed 
buyer is more likely to submit a low bid than is the uninformed buyer. 

The details of the argument for our main result, Theorem 1, are complicated 
by the fact that Gp need not be continuous nor strictly increasing over the 
convex hull of its support. Therefore, we confine the text to a heuristic 
demonstration of the result and provide a complete proof in the Appendix. 

THEOREM1: (a) b, G b, implies G,(bo)Gp(b,) 2 G,(bl)Gp(bo). (b) Suppose R 
is independent of (V, XI. If G, is strictly increasing ouer [b,, b,], then 
K(bo)G,(bo)Gp(bl) =K(b,)G,(b, )Gp(bo). 

SKETCHOF PROOF: Suppose G, and Gp are both differentiable and in- 
creasing at bid b > 0. Denote the densities of all distribution functions by their 
lower case letters and let w =E[VIR <b, P =b], u =E[VIR =b, P =b], E = 

/ - ,E[vIR = b,  P = t ]  d G p ( t ) / G p ( b ) ,  K = K ( b l b ) ,  and  K = 

/ b,K(blt) dGp(t)/Gp(b). 
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Suppose the informed buyer considers a unit increase in his bid. Since he 
wins the object with probability KG, at bid b, his expected cost increases by 
KG,. On the other hand, the gain in his expected profit from the additional 
chance of winning the object can be decomposed into two components. The first 
is his gain when the uninformed buyer bids just above b,(w - b)ZQ,. The 
second is his gain when the reservation price is just above b,(v - b)kG,. 
Consequently, the first order condition for profit maximization is 

(8) (w -b)Kg, + ( u  -b)kG, =KG,. 

Similarly, the first order condition for profit maximization by the uninformed 
buyer is 

By Assumption 4, the informed buyer makes positive profit at bid b. There- 
fore, w - b > 0. 

To prove part (a), note first that Lemma 2(b) implies that K G  K,and Lemma 
l(b) and Lemma 2(a) imply b 2 b. Therefore, we may combine equations (8) and 
(9) to yield 

Lemma 4(a) implies u 2 t;, and Lemma 4(b) implies k/K 2 Z/K. It follows from 
(lo), therefore, that gp/Gp 2 g,/G,. Integrating over [b', b] establishes 
part (a). 

To prove part (b), note that if R is independent of (V,X ) ,  then K =K, k =Z, 
and w = u. Furthermore, the zero profit condition (Lemma l(b)) implies that 
E = b. Combining equations (9) and (10) then imply 

Integrating over [b', b) establishes part (b). Q.E.D. 

Theorem l(a) implies the following corollary. 

COROLLARY implies Gp(bo)< G,(b,>. (b) G, 2 G,.1: (a) G,(bo) < G,(b,) 

Part (a) states that the support of G, contains the support of G,. Part (b) 
states that G, stochastically dominates G,. 
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Notice also that, wherever G, is increasing, Theorem l(b) implies that the log 
of the distribution function of max({R, a))grows at the same rate as log Gp. 
Consequently, above the support of R, G, and Gp are identical even if 
(V, R, X )  are positively correlated. Specifically, we have the following corollary. 

COROLLARY2: If K(blb) = 1, forb  2 b,, then G,(b) = Gp(b) forb  b,. 

Corollary 2 generalizes a result of EMW that established that G, and Gp are 
equal whenever the reservation price is not random. 

Besides the assumption that all distribution functions are differentiable, the 
sketch of the proof of Theorem 1 provided above also supposes that the two 
distribution functions have the same support. As we saw in Example 1 of 
Section 4, this restriction need not be satisfied when the reservation price is 
random. The more general proof provided in the Appendix handles these cases 
as well. 

We turn next to the restrictions on the distribution functions at low bids. 
Recall that the expected value of the object to the uninformed buyer when he 
wins the object with a bid of b is the average value of the object to the informed 
buyer when his equilibrium bid is no greater than b. Therefore, if the informed 
buyer sometimes expects negative profit at any winning bid, any zero profit, 
positive uninformed bid must exceed some profitable informed bids. This 
observation motivates Theorem 2. A precise proof requires a careful limiting 
argument and is presented in the Appendix. 

THEOREM2: There is a b > 0 such that Gp(b) > Gp(0) and G,(b) = G,(O). 

Theorem 2 implies that the informed buyer is more likely to submit a low bid 
than is the uninformed buyer. Either the informed buyer submits his lowest bid 
with positive probability while the uninformed bid distribution is continuous, or 
there is an interval around the lowest informed bid in which the uninformed 
buyer never submits a bid. The size of this interval depends on the distribution 
of (V, R, X). 

6 .  INFORMAL TESTS OF THE THEORY 

In this section, we analyze the bidding data from a superset of the drainage 
tracts used by HP in their study of auctions for offshore oil leases. Our data set 
contains the number and characteristics of the firms who submitted bids, the 
value of their bids, and the rejection decision on all drainage tracts offered for 
sale between 1959 and 1979 on which at least one firm submitted a bid. 

As we noted in the introduction, our theoretical model is based on the 
analysis of HP. Working with data from tracts offered for sale during the period 
1959 to 1969, they estimated the expost values of tracts offered for sale and the 
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adjacent tracts owned by firms participating in the auctions. With these esti- 
mates, they investigated the relation between tract values and the bidding 
behavior of the firms.7 Their work provides evidence that neighbor firms had 
better information about the value of a tract than did nonneighbor firms and 
that the neighbor firms coordinated their bidding so that there was effectively 
only one informed bidder. Therefore, we ignore all but the highest neighbor bid 
on any tract and call it the neighbor bid, B,. We call the highest bid among all 
nonneighbor firms, B,, the high nonneighbor bid. Note that, since our theory 
implies that the distribution of the highest nonneighbor bids is independent of 
the number of nonneighbor bidders (see the end of Section 4.11, our theoretical 
results may be applied to auctions with more than one nonneighbor without 
modifi~ation.~ 

Our assumption that the reserve price is an exogenous random variable is 
based on the HPS study of the same data set we employ here. Although the 
rejection decision is made after the bids are submitted, HPS found no evidence 
of strategic behavior on the part of the governmentag Also, based on their 
estimates of a probit equation of the rejection decision, they conclude that the 
probability of rejection was higher if the bid was submitted by a neighbor firm, 
even after conditioning on the value of the bid. While neighbor firms submitted 
the highest bid on 61% of the tracts, they submitted 79% of the rejected bids. 
Of tracts on which the high bid was less than .5 million dollars, 27 of the 54 bids 
submitted by neighbor firms were rejected while only 4 of 15 bids submitted by 
nonneighbor firms were rejected.'' Note that the theoretical model predicts that 
neighbor firms are more likely to submit low bids, and therefore more likely to 
submit a disproportionate fraction of rejected bids. 

Any test of the theory must incorporate the fact that the properties derived in 
Section 4 are valid only after conditioning on all relevant information, S, 
possessed by the nonneighbor firms. Let G,(.,s) denote the distribution 
function of B,, conditional on S = s, GI(., s )  the distribution function of B,, 
conditional on S=s, and f ( s )  the upper bound of the support of R, conditional 
on S = s .  Theorems 1 and 2 then imply the following relations for each 

'For tracts sold after 1970, they were unable to generate reliable estimates of tract value, both 
because the production histories are truncated and because expectations of firms about future oil 
and gas prices are difficult to measure or infer. 

There were two or more bids by neighbor firms on only 59 of the 257 tracts on which at least 
one neighbor firm submitted a bid. There were two or more bids by nonneighbor firms on 92 of the 
168 tracts on which at least one nonneighbor firm submitted a bid. 

'~ccording to Darius Gaskins (1976, p. 241), "the primary factor used in evaluating bids is the 
government's evaluation," which is determined prior to the sale date. 

'O HPS do not report the relation between the rejection decision and the number of bids. While 
169 of 295 tracts received two or more bids, those tracts accounted for only 11 of the 58 rejected 
bids. (Of the 130 tracts that received at least one neighbor and one nonneighbor bid, only 3 were 
rejected.) Although these figures suggest that the number of bids may have influenced the rejection 
decision, HPS found that the number of bids is sufficiently correlated with the maximum bid and the 
neighbor dummy so that its coefficient is not significantly different from 0 in a probit analysis of the 
rejection decision. In any event, we have not investigated the theoretical implications of this 
assumption. 
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FIGURE4.-Rates of change in the distributions. 

realization s of S: 

(R1) [G,(b,s) - G,(b - E,s)] /Gu(b,s)  

-< [G,(b,s)  - GI(b - & , ~ ) l / G I ( b , s )  

for G,(b, s ) ,  G,(b, s )  > 0 and E > 0. 

(R2) G,(b, s )  = G,(b, s ) ,  b > ?(s) .  

(R3) Forsome_b(s), GI(_b(s),s)>G1(O,s) and 

Ignoring for the moment the complications introduced by the information 
variable S, the histograms presented in Figures 4 and 5 illustrate two aspects of 
the empirical,distributions which directly test these relations. Figure 4 illustrates 
the relation between AG,/G, and AGu/Gu. The ratios were constructed by 
partitioning the set of all positive neighbor and high nonneighbor bids into 8 
equally sized subsets according to their rank. The interval of bids for each 
subset is indicated on the horizontal axis. For each interval of bids we then 
divided the number of neighbor bids in that interval by the number of tracts for 
which the neighbor bid was in that interval or below plus the number of tracts 
for which no neighbor firm submitted a bid to obtain AG,/G,. We computed 
AG,/G, similarly. 

Figure 4 lends strong support to all three relations. First, AG,/G, is as least 
as large as AGu/Gu over each range of bids, as required by (Rl). Second, the 
two ratios are roughly equal in the upper four intervals as is required if the 
distributions are equal over that range. Finally, AG,/G, exceeds AG,/G, by 
more than a factor of 5 over the first two intervals, lending support to (R3). 
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Range of Bids 
FIGURE5.-Relative number of low bids. 

Figure 5 provides additional evidence regarding the relative frequency of low 
bids by the neighbor and nonneighbor firms. Relation (R3) implies that over 
intervals of low bids, there should be relatively more high neighbor bids than 
high nonneighbor bids. In fact, regardless of which nonneighbor bid is selected 
on any tract, the theory implies that there should be more neighbor than (high) 
nonneighbor bids. Figure 5 illustrates the ratio of the number of bids in any 
interval to the total number of positive bids for the following four criteria: 
(i) the high positive nonneighbor bid on each tract (with distribution function 
G,), (ii) all positive nonneighbor bids (G,), (iii) the low positive nonneighbor 
bid on each tract (G,), and (iv) all positive (high) neighbor bids (G,,; Gu in 
Figure 4). Notice that in the lowest interval, the relative number of neighbor 
bids is twice the relative number both of high nonneighbor bids and of all 
nonneighbor bids. The relative number of low nonneighbor bids in this interval 
is roughly equal to the relative number of neighbor bids. Although a bit weaker, 
these relations are also satisfied in the second interval. We note also that since 
relatively more tracts received at least one positive bid by a neighbor firm, these 
figures actually understate the predominance of neighbor bids in the lower 
interval when we include tracts with no bids by nonneighbor firms. 

Figure 1 summarizes some of the information depicted in Figures 4 and 5. It 
illustrates the greater propensity of neighbor firms to submit a bid and the 
greater likelihood of neighbor firms to submit low bids when they participate. 
Moreover, the distribution function of the high neighbor bid stochastically 
dominates that of the high nonneighbor bid with a rough coincidence of the bid 
distributions above 4 million dollars. Therefore, our data set, as depicted in 
Figures 1, 4, and 5, is suggestive of the validity of the theory. 
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Since HP report that most tracts are about 2,500 acres with an official 
announced bid of $25/acre, it may be reasonable to suppose that the distribu- 
tion of the reserve price has a probability mass at $62,500. If so, reasonable 
restrictions on the distribution of information of the informed bidders imply a 
mass point in the distribution of the informed bid at that price." Although we 
believe that $62,500 is a good estimate of the lower bound of the distribution of 
R ,  we are less convinced that the buyers perceive a mass point at $62,500. As 
noted in the introduction, roughly 20% of the auctions resulted in the rejection 
of bids at higher prices. In any event, the neighbor firms do not appear to have 
bid near $62,500 with significant probability. (Some care must be taken in the 
interpretation of Figure 1, however, since those figures are all translated to 1972 
prices.) 

Without making parametric assumptions, a rigorous test of relations (Rl) to 
(R3) is not possible because of two difficulties. First, the data are drawn from a 
truncated distribution, in that our data include only tracts that received at least 
one bid. In particular, this presents a problem for tests of relation (Rl). Second, 
the distributions of B, and B, are almost surely not independent, and much of 
the heterogeneity across tracts in publicly available information variables is not 
observable by the ec~nometrician.'~ 

Our 1990 working paper employs nonparametric tests that apply the Wilcoxon 
rank sum statistic. These tests indicate that B, and B, are not independently 
distributed in our sample. After accounting for unobservable heterogeneity 
across tracts, it still appears that the relations illustrated in Figures 1, 4, and 5 
are statistically significant. However, these nonparametric tests are not defini- 
tive, but merely suggestive. 

To estimate a parametric specification, it may be necessary to employ numeri- 
cal methods in both estimation and simulation of a structural econometric 
model. There is no readily available affiliated joint distribution of (R, X, V )that 
yields closed form bid functions. However, one might assume that (R, X, V )are 
drawn from a multivariate lognormal distribution, which is affiliated if covari- 
ances are nonnegative, and characterize the first order conditions for equilib- 
rium bidding strategies. Then simulated moments estimation methods could be 
used to recover the parameters of the joint distribution, and overidentifying 
restrictions could be tested. Analogous methods are described by Laffont, 
Ossard, and Vuong (19931, in the case of symmetric independent private value 
auctions with a known reserve price. 

l1Let r be the greatest lower bound of the distribution of R and suppose that J(r ,  X = x )  > 0 
for all x .  If, in addition to Assumptions 1-5, we also assume that Pr(E[VIX]) € ( r ,  + e ) > 0 for 
any E > 0, then it may be shown that the distribution of the informed bid must have a mass point 
at 1. 

l2In their earlier study, HP established that, conditioning on the number of neighbor firms, the 
tract acreage, and the ex post value of the adjacent tract (the most significant of these variables), 
there is no significant relation between the high nonneighbor bid and the expost value of the tract. 
From this, they conclude that these variables contain most of the information possessed by 
nonneighbor firms in assessing the value of the tract. As noted above, however, we are unable to 
construct this information for most of the tracts in our sample, 
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In any case, reduced form tests of the theory are sufficient for our purposes. 
Knowledge of the structural parameters of the joint distribution of (V ,R, X )  is 
not intrinsically important for mechanism design (see, for example, Hendricks, 
Porter, and Tan (1993)), as opposed to knowing whether the predictions of the 
theory match the data. If the economic environment can be characterized by 
asymmetric information, a random reserve price, and approximately risk neu- 
tral, Bayesian Nash equilibrium behavior, then there is sufficient information to 
assess the institution. Of course, structural estimation would be useful to the 
extent that overidentifying assumptions implied by the theory can be tested. 

7. CONCLUSION 

This paper examines how asymmetries in the distribution of information 
among agents affect their behavior in a strategic setting. We study this issue in 
the context of a first-price auction with a random reservation price, in which one 
buyer has superior private information and all other buyers have access only to 
public information. Equilibrium bidding behavior under this information struc- 
ture requires that uninformed buyers collectively bid less frequently than the 
informed buyer but, if they bid, they submit high rather than low bids. Specifi- 
cally, we show that the distribution of the informed bid stochastically dominates 
the distribution of the high uninformed bid in the support of the reservation 
price, and the two distributions are identical above this range. These theoretical 
implications are strongly borne out by our data from the auctions for offshore 
oil drainage leases. 

Our empirical work suffers from the absence of an alternative model. It is 
difficult to construct alternative models that fit the data as well. For example, 
one might hypothesize that neighbor firms place a higher value on deposits on 
adjacent tracts than nonneighbor firms because they can internalize possible 
production externalities associated with a common pool. This could explain why 
nonneighbor firms are less likely to bid than neighbor firms and some aspects of 
the stochastic dominance relation between the distributions of the high non- 
neighbor and neighbor bids. However, it fails to explain the equivalence of the 
distributions of the high neighbor and nonneighbor bids above the support of 
the reservation price. To explain this feature of the data, one needs to assume 
that the production externality is present on small pools only. In that case, the 
neighbor firm may bid low more frequently than nonneighbor firms, since the 
latter may want to bid only on tracts that are likely to possess large pools. Such 
an assumption does not appear very plausible. It also fails to explain the 
relatively weak correlation between lease value and nonneighbor participation 
and bids. 

We have not addressed the issue of the optimality of the random reservation 
price rule used by the federal government, focussing instead on its implications 
for optimal bidding. Recent work by McAfee and Vincent (1992) suggests that 
current practice is not optimal. However, they do not contrast fked and random 
reservation price strategies, and in any case, it is debatable whether their 
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evidence is conclusive. Clearly, more work needs to be done on this subject. As 
Ashenfelter's (1989) discussion of wine auctions demonstrates, a random reser- 
vation price strategy is not unique to offshore oil and gas lease auctions, but can 
also be found in the private sector. Therefore, the optimality and implications of 
different reservation price strategies for bidding behavior may be of more 
general interest than suggested by our work here. 
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APPENDIX 

Al. THE EFFECT O F  INTRODUCING UNINFORMED BUYERS ON THE. INFORMED BID 

In this section, we establish that the introduction of uninformed buyers never lowers the 
equilibrium bid of the informed buyer. We suppose that bids must be nonnegative. 

THEOREMAl: If the auction with no uninformed buyers has an equilibrium, then it has an 
equilibrium P O  such that, for any equilibrium (P, a )  with an uninformed buyer, G,(P(x)) > 0 implies 
pO(x)< P(x) as.-P,. 

PROOF:Let @ , a )  be an equilibrium for an auction with an uninformed buyer and Po an 
equilibrium for an auction with no uninformed buyer. Then, since E[V- b (Rd b ,  X =x]J(b (x)  is 
right continuous in b as.-P,, we may define pO(x) to be the smallest maximizer of E[V- b ( Rd b, 
X=x]J (b  Ix) as.-P,. Let L = {x E RP:  P(x) < P0(x) and G,(P(x)) > 01. Suppose P,(L) > 0. Then, 
the definition of P O  implies 

But since G,(P(x)) 6G,(P'(x)) for x E L, the best response property for /3 (Lemma l(a)) requires 

a contradiction. Q.E.D. 



1439 AUCTIONS FOR OIL AND GAS LEASES 

M .  AFFILIATION 

In this section, we define the concept of affiliated random variables and establish Lemma 2 of the 
text. If Z is a random vector taking values in R P ,then the probability measure on R P induced by Z 
is denoted by PZ. 

For x, y E R P , let x A y denote the pointwise minimum of x and y, and let x V y denote the 
pointwise maximum of x and y. A function f :  R P  +R is affiliated if x, y ER P implies 

A set S E R P  is a sublattice if is  is affiliated. 
For any set A cR P ,let iA denote the indicator function for A on RP.A set A ER P is increasing 

if i ,  is nondecreasing. Given two sets A and B, let AB denote their intersection. A random 
variable Z is affiliated if, for all increasing subsets A,, A ,  of R P  and every sublattice S of R P ,  
Pz(A,A2S)Pz(S)g Pz(A,S)Pz(A2S).Milgrom and Weber (1982) establish the following result. 

LEMMAAl:  Z is affiliated if and only if for any nondecreasing functions a l  and a ,  on a sublattice 
S cR P ,  E[a1(Z)a2(Z)is(Z)I E[iS(Z)I> E[a l (Z) iS (Z) IE[a2(Z) iS (Z)~ .  

PROOFOF LEMMA2: (a) Let I and J be two disjoint intervals13 of R X R" such that ( x ' ,  r ')  E I 
and ( x ,r )E J implies x' g x  and r' 6 r. Let T be the minimal sublattice containing I U J, let 
S = R x T , and let Z = ( V ,  R,  X ) .  Then, since T is a lattice, letting a,(Z) = V ,and a 2 ( Z )= L ~ ( R ,X ) ,  
Assumption 1 and Lemma A1 imply that 

Similarly, letting a , (Z)= V and a 2 ( Z )= the application of Lemma A1 implies, after L ( ~ - ~ ) ( X ) ,  
cancelling terms, 

Multiplying (A l l  and (A2)and cancelling terms, then yields 

(b) Let I and J be two disjoint intervals of R" such that x' E I and x E J implies x' g x  and let 
T be the minimal sublattice containing I U J .  Let S = R x (-a,r ]X T , Z = (V ,  R ,  X ) ,  and a l ( Z )= 
i~, . ,rl(R).Suppose first that a 2 ( Z )= i J ( X ) .Then Assumption 1 and Lemma A1 imply 

Suppose next that a,(Z) = - i I ( X )  Then a similar application of Lemma A1 implies, after 
cancelling terms, 

E [ ~ ~ ~ , , ~ ~ ( R ) ~ I ( x ) ] ~ [ ~ ~ - ~ , ~ ] ( ~ ) ~ T ( ~ ) ] .  


Multiplying (A4)and (A5) and simplifying yields 

(A6)  E [ ~ ~ - ~ , , ~ ~ ( R ) ~ I ( X ) ] E [ ~ ( - ~ , ~ ] ( ~ ) L , ( X ) ]  

~[~(-m,r'](R)lJ(x)]E[l[-x,r](R)lI(x)] 


Since the intervals of R" generate its Borel sets, parts (a) and (b) follow from relations (A31 and 
(A6). Q.E.D. 

13 A subset A is an interval of a subset S cR P  if there are p-tuples (a,,. . . ,a,) and (b l , .. . ,6,) 
such that A = {x E S:  ai < ( < ) x i< ( < )bi, i = 1,... ,p), where the symbol ,< ( <) indicates that we 
are allowing arbitrary open, half-open, and closed intervals. 
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A3. PROOFS OF THEOREMS 1 AND 2 

If f is a monotonic function, let f - ( r )  = limST,f (s) .  

LEMMAA2: Suppose f  and g  are nondecreasing, nonnegative, right continuous functions. Then 
f(ro)g(rl)<f(r,)g(ro), ro < r1 implies an 17 < 1  and r ,  > r0 such that [ g - ( r 2 )  -g ( r ) l f ( r )< q[  f ( r 2 )  
- f ( r ) l g ( r ) ,  r  ( ro ,  r2). 

PROOF: Suppose f ( ro)g(r l )<f ( r l )g(ro) for some ro < r,. Then we may choose 170 < 1 so that 
[g(r , )- ~ o g ( r o ) ] / [ f ( r l )f(ro)]< Tog( ro ) / f ( ro ) .  and g are right continuous - Since T~ < 1 and f 
and nondecreasing, [ g - ( r )- qog( ro ) ] / [f ( r )  -f (ro)]attains a minimum over (r,, r,] at some r, for 
which f ( r )  <f(r,) for r < r2. Therefore, for r E (rO,  r,), 

[ g - ( r )  - r i o g ( r o ) ] [ f ( r 2 )  - f ( r O ) l  > [ g - ( r 2 )  - ~ o g ( r o ) l [ f i r )  - f ( r o ) l  

= [ g - ( r 2 )  - q o g ( r o ) l [ f ( r 2 )  - f ( r o ) I  

- [ g - ( r 2 )  - - f ( r ) ]~ O g ( r o ) l [ f ( r 2 )  

which implies 

By definition, - f ( r J  - f ( rO) l  < vog(ro!/ f(ro).  Multiplying both sides by[ g - ( r 2 )  ~ O g ( r O ) l / [  
[ f ( r 2 )-f ( ro)] f (ro) ,adding g- ( r , ) f ( r2 ) + qog(ro) f (ro) ,and simpllf~ing implies an 17 < 1 such that 

Multiplying relation (A7 ) by f(r,), substituting relation ( ~ 8 ) ,and dividing by [ f ( r , ) -  f(ro)] then 
yields 17g-(r2)[ f(r,) -f ( r ) l >  f ( r2 ) [g - ( r2 )  -g(r)l which may be rewritten as 

LEMMAA3: G,(bo) < G,(bl) implies G,(bo) < G,(b,). 

PROOF: Suppose not. Then b ,  may be chosen so that b < b ,  implies G,(b) < G,(b,). Then, since 
GB(bo)= G,(b,), the best response property for the uninformed buyer (Lemma l (b) ) then implies 
that 

Our convention that positive bids must win the object with positive probability (Assumption 4) 
implies that K(b , 1 bo)Gp(bo)> 0. Therefore, bo may be chosen so that b < bo implies G ( b )  < 
G,(bo) = G,(b,)  Since the informed buyer sometimes earns negative profits at bo (Lemma 8,(A91 
implies that E [ V- b , IR <b,,  0,- bo]K(b ,1 bo)> 0. The best response property for informed buyers 
(Lemma l (a)) and the monotonic~ty of G, then imply that 
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We will show that relations (A9 ) and (AlO) are inconsistent. Note first that Lemnia 4(a) and 
relatioil (A91 imply 

Multiplying by K(boI b,) then implies 

But Lemma 4(b) implies that [K(b , l b )-K(b,lb)]K(b,,/b,) g [ K(b,lbr,)-K(bolbn)lK(b,lb), a s . -
Pp Substituting into the left side of (Al l )  and dividing by lK(b,,Ib)Pp(cib)then yields 

~ [ ~ - b , l b , ~ ~ R  2 [ b ,  -bo]K(b,lb, j)  < b , ,  P = b , ] [ K ( b , l b , )  - ~ ( b o l b o ) ]  

which violates relation (A10). Q.E.D. 

PROOFOF THEOREM11: Suppose part (a) is false. Then G,(b,)Gp(b,) < G,(b,)Gp(hn) for some 
b,  < b,. Since G, and (;p are right continuous, it follows from Lemma A2 that b l  may be chosen so 
that, for some 77 < 1. 

(-412) [ G ; ( ~ I )- G p ( b ) ] G , ( b )  < v [ G , ( ~ I )  - ~ , ( b ) ] ~ p ( b ) ,  b~ ( h o , b , ) .  

We will use the best response properties of Lemma 1 to establish a contradiction to (A12). 
Since (A12) implies that G,(b) < G,(b,) for b < b,. the zero profit condition for the uninformed 

buyer (Lemma l (b) )implies a nondecreasing sequence b k  t b ,  such that 

We show first that Pp({bl] )= 0. Suppose not. Then. (A13) and Assumption 5 imply that 
E [ V - b, lR  < b,,  p = b , ] K ( b ,  Ib,) > 0. But relation (A131 also implies that 

E [ V - b , l R  <b , ,  B = b I ] K ( b l  Ib , )Pp({b ,} )  

- lim b k I R <  b k ,  p = b ] ~ ( b ~ I b ) ~ ~ ( d b )  6 [ ~ -
k + = (  x . h h ]  

= 0. 

We conclude that G p ( b , )= Gp(b, )ro that (A12) may be wr~tten ar 

('414) [ ~ ; p ( b , )  ~ p ( b ) I ~ , , ( b >  - ~ ; , ( b ) l ~ o ( b ) .  b e  ( b " . b l ) .  - < 7 ? [ ~ < , ( b l )  

Relation (A141 and Lemma A3 imply that C;@(b)< G@(b,) ,b < b,.  Therefore, (A13) and our 
convention that positive bids must earn positive profits (Assumption 4) implies that ( b k )may be 
chosen so that I(-,,, ~ , E [ v -b k l ~  > 0, k = 1.2,. . . .g b k .  j3 = b h ] t i ( b k l h h )  Therefore, since 7 < I 
and P,j((b,))= 0, it follows from Lemma 4 that b ,  may be chosen so that 
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The best response properties (Lemma 1) also imply that bo may be chosen to satisfy the following 
inequalities: 

(A16) E[V- b,lR < b,, P =bo]K(b,lb,)G,(bo) 

> E [ V - bllR < b l ,  P =bo]K(bllbo)G,(bl) 

and 

For b > 0 and i = 1,2, let K,(b) =K(biIb), w,(b)= E[VIR < b,, p = b], and w',(b)= EIVlbo < 
R < b,, p = b]. Then relation (A161 implies 

('418) [w,(b,) - bllKl(bO)[G,(bl) - G,(bo)l 

+ [[w*(b,) - b,l[K,(bo) -K,(bO)l - [ b , -  b,lKl(bO)l~,(bO) GO. 

Similarly, substituting (A15) into (A17) and rearranging terms yields 

(A19) [w,(bo) - b l l ~ l ( b o ) [ ~ p ( b l ~  ~ p ( b o ) ]-

We will show that relations (A18) and (A191 and the restrictions of Lemma 4 are inconsistent with 
relation (A14). 

Since Lemma 4(a) implies w,(b) 6 wA(b0), b < bO a.s.-Pp, relation (A191 implies 

Also, since Lemma 4(a) and relation (A141 imply wA(bo) > bo, and Lemma 4(b) implies [ ~ , ( b )  -
K,(b)]K,(b,) < [Kl(b,) -Ko(bo)]Kl(b), b < bo as.-Pp, relation (A20) implies 

( M I )  [w,(bo) - b 1 1 ~ 1 ( b o ) [ ~ p ( b 1 >  - Gp(bo) l~1(b , )  

+ T[[w',(~,) - bOI[Kl(bO) -Ko(bo)l 

Finally, since Lemma 4(b) implies Kl(b) > Kl(bo), b < bo as.-Pp, relation (A151 implies [w,(bo)- 
bl]K,(b,) > 0, it follows from ( M I )  that 

- [ b , -  b o l K l ( b o ) l ~ p ( b o ) ~ O .  

Multiplying (A191 by Gp(bo), (A21) by G,(bo)/g, and subtracting then implies [ G  (b,) -
Gp(bo)](;,(bo) s ?IIG,(bl) - G,(bo)]Gp(b,), contradicting relation (A14). This proves part &). 

(b) If R is independent of (V, X ) ,  then K(blbl)= K(b). Let c(b) = E[VIp = b] and H(b) = 
G,(b)K(b). Suppose G, is strictly increasing on (b', b") with b' > 0. Then part (a) implies that Gp is 
also strictly increasing on (b', b") so that Assumption 4 guarantees that c(b) > b, b E (b', b") as.-Pp. 

We establish first that Gp and H are continuous on (b', b"). For b, b + E E (b', b"), the zero profit 
condition (Lemma l(b)) impl~es (b + &)Gp(b+ E)- bGp(b) = j(b,b+,lu(t)Pp(dt). Letting E 1 0  then 
yields Pp({b)) = 0. Similarly the best response property for P (Lemma l(a)) implies [u(b -E)-
b]H(b) < [u(b - E)- b + E ] H ( ~- E) or, equivalently, [u(b -E)- b + ~ l [ H ( b )-H(bs) l<  &H(b). 
Letting E 1 0  then yields H(b -E)t H(b). 
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Given the continuity of Gp, we may express the zero profit condition for a in terms of the 
Stieltjes integral, bGp(b) = b,C;p(b,) + jt,u(,t)dGp(t), b E [b', b"). Let a ( b )  = u(b) - b. Then, ap- 
plying the formula for integration by parts ylelds 

(A23) F n ( b )  d ~ ~ ( b )  = / b " ~ p ( b )  db. 
b' 

Now consider an arbitrary increasing sequence b' = b, < h, < . . . < b,-, < b, = b". The best 
response condition for p implies, for i = 1,. . . , n, 

and 

Since .ir is of bounded variation (the difference between two monotone functions) and H is 
continuous, (A24) and (A25) imply 

(A26) C " a ( t )  d ~ ( t )  = I b ' H ( t ) d t ,  b r [br,  b"]. 
b' 

Furthermore, since Gp and H are continuous and positive on [b', h"], it follows from (A23) and 
(A26) that, for b E [b', b"], 

(A27) Lb"n(t) d log ( ~ ~ ( t ) )  hf,= b -

and 

(A28) r ' a ( t )  d log ( ~ ( t ) )  = b - b'. 

Subtracting (A281 from (A27) and recalling that a (b )  > 0, b E [b', b"], it follows that j,b'd log(H(t)) 
= lbhd log(Gp(t)), b E [b', b"]. Upon evaluating this expression and substituting for H, we obtain 
part (b). Q.E.D. 

PROOFOF THEOREM2: We will show that Gp(b*)= Gp(0) implies G,(bl) = G,(O), for some 
b' > b*. Fix b, > b*. Since Assumptions 4 and 5 imply that Gp(0) > 0, it follows from Assumptions 3 
and 4 that K(b, 1 b)G,(b,) > 0 as.-Pp. The best response property for P implies E[V - b, 1 R 4 b,, 
P = b]K(b, lb)G,(b,) 6 0 for b < b* as.-P . Therefore, it follows from Assumption 5 that 
&m,b.lEIV- hi 1 R < b,, P = b]K(b, b ) P  (A)< 0. The right continuity of G then implies a 
b' > b* such that, for b2 < b', j(-.,b,i~[&- b l / R6 b,, P = b]K(b, b)Pp(db) < 6and hence from 
Lemma 4(a) that j71,b2JE[V- b 2 R  4 b2, P = b]K(bilb)Pp(db) < 0. The result then follows from 
the zero profit con ltlon or a (Lemma l(b)). Q.E.D. 
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